Tuesday, July 19, 2016

Inverse Function


If a set  obtained  by  interchanging  the  co-ordinates   of 
each ordered pair  of  a function  is  a  function  , then  the given  function  is  an  invertible  function  and  the   new  function  is  the  inverse  function  .

A  function  has  inverse  if and only if it  is  a  one-to-one  

 E.g.

*
{(1,2),(3,4),(5,1)} → {(2,1),(4,3),(1,5)}

It is  a  invertible  function and its inverse  function  
{(2,1),(4,3),(1,5)}.

*
{(1,2),(3,2),(5,1)} →  {(2,1),(2,3),(1,5)}
It is a function but not invertible  function  . So  Its can not  do  inverse .

Definition Lets f  be  a  One-to-One  function with  domain X and  range  Y .The  inverse  of  f  is  the  function  g  with  domain  Y and  Range X  for which
 
        f(g(x)) = x  for every x in Y   
  and  g(f(x)) = x for every x in X

So f  is not  One-to-One ,then it has no inverse function.

Procedure of finding  f-1(x)

    1) Check whether  the  function  is  One-to-One
    2) Write the function y=f(x)
    3) Solve for x (in terms of y)
    4) Interchange x and y
    5) Write y= f-1(x)

Properties :
i)                 Domain of f = Range of f-1
ii)              Range of f = Domain of f-1
iii)           f-1  is One-to-One.
iv)           Inverse of f-1 is  f

Example :

y = f(x) =(x+1) / (2x-5)

Domain of f = R – {5/2 }

Here, y = (x+1)/(2x-5)
      => 2xy-5y=x+1
      => 2xy-x=5y+1
      => x(2y-1)=5y+1
      So x = (5y+1) / (2y-1)

Interchanging x and y , we get , 
       y = (5x+1) / (2x-1) = f-1(x)

Domain of f = R – {1/2 }
Range of f = R – {5/2}

Graphs of f and 
f-1

The   graph  of  f and f-1 are reflections  of  each other  in the  line  y = x . Tn the  other  words , the graphs  of  f and  f-1  are  symmetric  with  respect  to  the  line  y=x .
Such  as ,  y = x3






2 comments: